Cart (Loading....) | Create Account
Close category search window
 

Network classless time protocol based on clock offset optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gurewitz, O. ; Dept. of Electr. Eng., Israel Inst. of Technol., Haifa ; Cidon, I. ; Sidi, M.

Time synchronization is critical in distributed environments. A variety of network protocols, middleware and business applications rely on proper time synchronization across the computational infrastructure and depend on the clock accuracy. The Network Time Protocol (NTP) is the current widely accepted standard for synchronizing clocks over the Internet. NTP uses a hierarchical scheme in order to synchronize the clocks in the network. In this paper we present a novel non-hierarchical peer-to-peer approach for time synchronization termed CTP-Classless Time Protocol. This approach exploits convex optimization theory in order to evaluate the impact of each clock offset on the overall objective function. We define the clock offset problem as an optimization problem and derive its optimal solution. Based on the solution we develop a distributed protocol that can be implemented over a communication network, prove its convergence to the optimal clock offsets and show its properties. For compatibility, CTP may use the packet format and number of measurements used by NTP. We also present methodology and numerical results for evaluating and comparing the accuracy of time synchronization schemes. We show that the CTP outperforms hierarchical schemes such as NTP in the sense of clock accuracy with respect to a universal clock

Published in:

Networking, IEEE/ACM Transactions on  (Volume:14 ,  Issue: 4 )

Date of Publication:

Aug. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.