By Topic

TCP-LP: low-priority service via end-point congestion control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kuzmanovic, A. ; Dept. of Electr. Eng. & Comput. Sci., Northwestern Univ., Evanston, IL ; Knightly, E.W.

Service prioritization among different traffic classes is an important goal for the Internet. Conventional approaches to solving this problem consider the existing best-effort class as the low-priority class, and attempt to develop mechanisms that provide "better-than-best-effort" service. In this paper, we explore the opposite approach, and devise a new distributed algorithm to realize a low-priority service (as compared to the existing best effort) from the network endpoints. To this end, we develop TCP Low Priority (TCP-LP), a distributed algorithm whose goal is to utilize only the excess network bandwidth as compared to the "fair share" of bandwidth as targeted by TCP. The key mechanisms unique to TCP-LP congestion control are the use of one-way packet delays for early congestion indications and a TCP-transparent congestion avoidance policy. The results of our simulation and Internet experiments show that: 1) TCP-LP is largely non-intrusive to TCP traffic; 2) both single and aggregate TCP-LP flows are able to successfully utilize excess network bandwidth; moreover, multiple TCP-LP flows share excess bandwidth fairly; 3) substantial amounts of excess bandwidth are available to the low-priority class, even in the presence of "greedy" TCP flows; 4) the response times of web connections in the best-effort class decrease by up to 90% when long-lived bulk data transfers use TCP-LP rather than TCP; 5) despite their low-priority nature, TCP-LP flows are able to utilize significant amounts of available bandwidth in a wide-area network environment

Published in:

Networking, IEEE/ACM Transactions on  (Volume:14 ,  Issue: 4 )