By Topic

On the design of large degree-of-freedom digital mechatronic devices based on bistable dielectric elastomer actuators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. Wingert ; Dept. of Mech. Eng., MIT, Cambridge, MA, USA ; M. D. Lichter ; S. Dubowsky

Binary actuation has been proposed to reduce complexity in robotic and mechatronic systems. However, a relatively large number of binary actuators are required to achieve the accuracy necessary for practical applications. Conventional actuators are not practical for such large degree-of-freedom (DoF) devices. Here, a dielectric elastomer (DE) actuator is developed for these applications. It is shown that DE actuators have high energy densities, light weight, low cost, and large displacements. Hence they could potentially make large DoF binary systems practical. DE actuators proposed here consist of thin electrically sensitive elastomer films that are mounted in a flexible frame that incorporates a passive bistable element. The frame prestrains the film and provides a restoring force that allows the actuator to operate bidirectionally. A simple experimental prototype 6-DoF binary manipulator demonstrates the concept

Published in:

IEEE/ASME Transactions on Mechatronics  (Volume:11 ,  Issue: 4 )