By Topic

Leakage and charge injection optimization in a-Si AMOLED displays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sakariya, Kapil ; Dept. of Electr. & Comput. Eng., Waterloo Univ., Ont. ; Nathan, A.

In this paper, we examine the effect of switch thin-film transistor (TFT) leakage and charge injection on the operation and driving of amorphous silicon (a-Si) active matrix organic light-emitting diode (AMOLED) displays. Charge injection causes an undesirable and immediate drop in the data voltage stored on the storage capacitor CS when the switch TFT is turned off, and the leakage of the switch TFT causes the charge on CS to gradually leak out over the frame time. While making the row line negative helps reduce the leakage, it increases the voltage swing on the row line and causes more charge injection. We have demonstrated that for a given VDD, there is an optimal negative gate drive voltage on the switch TFT that minimizes the overall drop in data voltage on CS over the frame time. In addition, we have also shown that even though this optimal driving point changes with aging of the display since both leakage and VT increase over time, it is possible to keep the voltage drop on CS constant irrespective of aging. The analysis provides the designer with a means to improve the long term grey-scale performance of the AMOLED display

Published in:

Display Technology, Journal of  (Volume:2 ,  Issue: 3 )