By Topic

Rotation Forest: A New Classifier Ensemble Method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rodriguez, J.J. ; Escuela Politecnica Superior, Burgos Univ. ; Kuncheva, L.I. ; Alonso, C.J.

We propose a method for generating classifier ensembles based on feature extraction. To create the training data for a base classifier, the feature set is randomly split into K subsets (K is a parameter of the algorithm) and principal component analysis (PCA) is applied to each subset. All principal components are retained in order to preserve the variability information in the data. Thus, K axis rotations take place to form the new features for a base classifier. The idea of the rotation approach is to encourage simultaneously individual accuracy and diversity within the ensemble. Diversity is promoted through the feature extraction for each base classifier. Decision trees were chosen here because they are sensitive to rotation of the feature axes, hence the name "forest". Accuracy is sought by keeping all principal components and also using the whole data set to train each base classifier. Using WEKA, we examined the rotation forest ensemble on a random selection of 33 benchmark data sets from the UCI repository and compared it with bagging, AdaBoost, and random forest. The results were favorable to rotation forest and prompted an investigation into diversity-accuracy landscape of the ensemble models. Diversity-error diagrams revealed that rotation forest ensembles construct individual classifiers which are more accurate than these in AdaBoost and random forest, and more diverse than these in bagging, sometimes more accurate as well

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:28 ,  Issue: 10 )