By Topic

Convergent Tree-Reweighted Message Passing for Energy Minimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

Algorithms for discrete energy minimization are of fundamental importance in computer vision. In this paper, we focus on the recent technique proposed by Wainwright et al. (Nov. 2005)- tree-reweighted max-product message passing (TRW). It was inspired by the problem of maximizing a lower bound on the energy. However, the algorithm is not guaranteed to increase this bound - it may actually go down. In addition, TRW does not always converge. We develop a modification of this algorithm which we call sequential tree-reweighted message passing. Its main property is that the bound is guaranteed not to decrease. We also give a weak tree agreement condition which characterizes local maxima of the bound with respect to TRW algorithms. We prove that our algorithm has a limit point that achieves weak tree agreement. Finally, we show that, our algorithm requires half as much memory as traditional message passing approaches. Experimental results demonstrate that on certain synthetic and real problems, our algorithm outperforms both the ordinary belief propagation and tree-reweighted algorithm in (M. J. Wainwright, et al., Nov. 2005). In addition, on stereo problems with Potts interactions, we obtain a lower energy than graph cuts

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:28 ,  Issue: 10 )