Cart (Loading....) | Create Account
Close category search window
 

Activity Recognition of Assembly Tasks Using Body-Worn Microphones and Accelerometers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ward, J.A. ; Inst. for Electron., Swiss Fed. Inst. of Technol., Zurich ; Lukowicz, P. ; Troster, G. ; Starner, T.E.

In order to provide relevant information to mobile users, such as workers engaging in the manual tasks of maintenance and assembly, a wearable computer requires information about the user's specific activities. This work focuses on the recognition of activities that are characterized by a hand motion and an accompanying sound. Suitable activities can be found in assembly and maintenance work. Here, we provide an initial exploration into the problem domain of continuous activity recognition using on-body sensing. We use a mock "wood workshop" assembly task to ground our investigation. We describe a method for the continuous recognition of activities (sawing, hammering, filing, drilling, grinding, sanding, opening a drawer, tightening a vise, and turning a screwdriver) using microphones and three-axis accelerometers mounted at two positions on the user's arms. Potentially "interesting" activities are segmented from continuous streams of data using an analysis of the sound intensity detected at the two different locations. Activity classification is then performed on these detected segments using linear discriminant analysis (LDA) on the sound channel and hidden Markov models (HMMs) on the acceleration data. Four different methods at classifier fusion are compared for improving these classifications. Using user-dependent training, we obtain continuous average recall and precision rates (for positive activities) of 78 percent and 74 percent, respectively. Using user-independent training (leave-one-out across five users), we obtain recall rates of 66 percent and precision rates of 63 percent. In isolation, these activities were recognized with accuracies of 98 percent, 87 percent, and 95 percent for the user-dependent, user-independent, and user-adapted cases, respectively

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:28 ,  Issue: 10 )

Date of Publication:

Oct. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.