By Topic

Stencils and Problem Partitionings: Their Influence on the Performance of Multiple Processor Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
D. A. Reed ; Department of Computer Science, University of Illinois ; L. M. Adams ; M. L. Patrick

Given a discretization stencil, partitioning the problem domain is an important first step for the efficient solution of partial differential equations on multiple processor systems. We derive partitions that minimize interprocessor communication when the number of processors is known a priori and each domain partition is assigned to a different processor. Our partitioning technique uses the stencil structure to select appropriate partition shapes. For square problem domains, we show that nonstandard partitions (e.g., hexagons) are frequently preferable to the standard square partitions for a variety of commonly used stencils. We conclude with a formalization of the relationship between partition shape, stencil structure, and architecture, allowing selection of optimal partitions for a variety of parallel systems.

Published in:

IEEE Transactions on Computers  (Volume:C-36 ,  Issue: 7 )