Cart (Loading....) | Create Account
Close category search window

Processor Allocation for Horizontal and Vertical Parallelism and Related Speedup Bounds

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Polychoronopoulos, C.D. ; Center for Supercomputing Research and Development, and with the Department of Electrical and Computer Engineering, the University of Illinois ; Banerjee, U.

The main aim of the paper is to study allocation of processors to, parallel programs executing on a multiprocessor system, and the resulting speedups. First, we consider a parallel program as a sequence of steps where each step consists of a set of parallel operations. General bounds on the speedup on a p- processor system are derived based on this model. Measurements of code parallelism for the, LINPACK numerical package are presented to support the belief that typical numerical programs contain much potential parallelism that can be discovered by a good restructuring compiler. Next, a parallel program is represented as a task graph whose nodes are do across loops (i.e., loops whose iterations can be partially, overlapped). It is shown how processors can be allocated to exploit horizontal and vertical parallelism in such graphs. Two processor allocation heuristic algorithms (WP and PA) are presented. PA is the heart of the WP and is used to obtain efficient processor allocations for a set of independent parallel tasks. WP allocates processors to general task graphs. Finally, a general formula for the speedup of a DO across loop is given that is more accurate than the known formula.

Published in:

Computers, IEEE Transactions on  (Volume:C-36 ,  Issue: 4 )

Date of Publication:

April 1987

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.