By Topic

On Fault Isolation and Identification in t1/t1-Diagnosable Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yang, C.-L. ; Department of Electrical Engineering and Computer Science, The Johns Hopkins University ; Masson, G.M. ; Leonetti, R.A.

Consider a classical PMC system composed of n units [1] where it is assumed that at most t1 of these units are faulty. Such a system is said to be t1/t1-diagnosable [3] if, given any complete collection of test results, the set of faulty units can be isolated to within a set of at most t1 units. This paper exposes some new, important properties of general t1/t1-diagnosable systems to present an O(n2.5) algorithm by which all the faulty units except at most one can be correctly identified and all the faulty units can be isolated to within a set of t1 or fewer units in which at most one can possibly be fault free.

Published in:

Computers, IEEE Transactions on  (Volume:C-35 ,  Issue: 7 )