By Topic

New Classes for Parallel Complexity: A Study of Unification and Other Complete Problems for P

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Vitter, J.S. ; Mathematical Sciences Research Institute ; Simons, R.A.

Previous theoretical work in computational complexity has suggested that any problem which is log-space complete for P is not likely in NC, and thus not parallelizable. In practice, this is not the case. To resolve this paradox, we introduce new complexity classes PC and PC* that capture the practical notion of parallelizability we discuss in this paper. We show that foqur complete problems for P (nonsparse versions of unification, path system accessibility, monotone circuit value, and ordered depth-first search) are parallelizable. That is, their running times are O(E + V) on a sequential RAM and O(E/P + V log P) on an EXCLUSIVE-READ EXCLUSIVE-WRITE Parallel RAM with P processors where V and E are the numbers of vertices and edges in the inputed instance of the problem. These problems are in PC and PC*, since an appropriate choice of P can speed up their sequential running times by a factor of μ(P). Several interesting open questions are raised regarding these new parallel complexity classes PC and PC*. Unification is particularly important because it is a basic operation in theorem proving, in type inference algorithms, and in logic programming languages such as Prolog. A fast parallel implementation of Prolog is needed for software development in the Fifth Generation project.

Published in:

Computers, IEEE Transactions on  (Volume:C-35 ,  Issue: 5 )