By Topic

Fault-Tolerant 256K Memory Designs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Tanner, R.M. ; Department of Computer and Information Sciences, University of Califomia

A series of designs for a 256K memory are presented which integrate error-correcting coding into the memory organization. Starting from a simple single-error correcting product code, the successive designs explore trade-offs in coding efficiency, access delay, and complexity of communication and computation. In the most powerful design, all the 256K bits are organized so that they form a codeword in a double-error-correcting triple-error-detecting code derived from a projective plane. Because all of the bits are components of this single codeword, the coding efficiency is very high; the required parity check bits increase the storage by only 3 percent, approximately. Single error correction can take place at the time of a read with very little additional delay compared to that of a normal irredundant memory. Multiple error correction can be performed by the memory management system. A variety of failure modes, including failure of a whole column of one of the constituent 64 x 64 subarrays can be tolerated. Writing into the memory is somewhat slower than in a conventional memory, involving a read-write cycle.

Published in:

Computers, IEEE Transactions on  (Volume:C-33 ,  Issue: 4 )