By Topic

A Residue Number System Implementation of the LMS Algorithm Using Optical Waveguide Circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
D. D. Miller ; Energy Technology Applications Division, Boeing Computer Services ; J. N. Polky

A detailed design of a real-time data processor based on the residue number system is presented which uses near-term optical waveguide devices and concepts. The optical computational units consist of cascaded, mask-programmable arrays of total internal reflection electrooptic switches arranged on a LiNbO3 substrate in a serpentine configuration. This paper describes these computational units and then concentrates on the computational and residue-related aspects of the processor. A new scaling algorithm is presented which is based on the Chinese remainder theorem and performs scaling during a single clock period. The least-mean-square adaptive filter algorithm with eight weights is tailored to the optical waveguide residue arithmetic format and requires only three computational stages per iteration. Detailed computer simulations of the processor have verified the design and representative output is included. An envisioned 8 ns clock period corresponds to 2.5 × 109 operations/s ( 2.5 G operations/s) using the equivalent of 23 bit internal precision, which compares favorably to expected rates using established technologies.

Published in:

IEEE Transactions on Computers  (Volume:C-32 ,  Issue: 11 )