By Topic

Processor Architectures for Two-Dimensional Convolvers Using a Single Multiplexed Computational Element with Finite Field Arithmetic

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nagpal, H.K. ; Department of Electrical Engineering, University of Windsor ; Jullien, G.A. ; Miller, W.C.

This paper describes the theory, simulation, and construction of a two-dimensional number theoretic transform (NTT) convolver. The convolver performs indirect convolution by using the cyclic convolution property of a class of generalized discrete Fourier transforms (DFT's) defined over rings isomorphic to direct sums of Galois fields. The paper first presents the theoretical development of the computational element required for computing the generalized discrete Fourier transform (GDFIT) and its inverse. The theory extends the use of base fields to second degree extension fields and provides efficient choices for transform parameters to minimize hardware. The paper next presents results of recent work in multidimensional transform memory structures, and extends this work to the complete convolution process. The two theories are then "married" to produce efficient, very high speed convolution architectures. Simulation results are presented for a second degree extension field image convolver and constructional details are presented for a fast image convolver using 2 base fields and designed to operate as a peripheral to a fast 32 bit minicomputer.

Published in:

Computers, IEEE Transactions on  (Volume:C-32 ,  Issue: 11 )