By Topic

The Binary Tree as an Interconnection Network: Applications to Multiprocessor Systems and VLSI

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Horowitz, E. ; Department of Computer Science and Electrical Engineering, University of Southern California ; Zorat, A.

The binary tree is a natural way to organize complex computations by a computer. For problems that can be naturally divided into a tree structure, a great deal of parallelism may be employed. In this paper we examine several aspects of the binary tree structure as it relates to both multiprocessor systems and to VISI circuit design. First, we present an algorithm for mapping an arbitrary binary tree onto the plane. An analysis shows the density of this mapping. Second, we consider the problem of routing messages within a binary tree under the assumption that certain nodes may be faulty. Finally, we analyze the binary tree's capacity to transfer information between nodes and we compare it to the capacity of the linear array and the grid.

Published in:

Computers, IEEE Transactions on  (Volume:C-30 ,  Issue: 4 )