By Topic

Minimally Testable Reed-Muller Canonical Forms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Page, E.W. ; Department of Computer Science, Clemson University

Arbitrary switching function realizations based upon Reed- Muller canonical (RMC) expansions have been shown to possess many of the desirable properties of easily testable networks. While realizations based upon each of the 2n possible RMC expansions of a given switching function can be tested for permanent stuck-at-0 and stuck-at-1 faults with a small set of input vectors, certain expansions lead to an even smaller test set because of the resulting network topology. In particular, the selection of an RMC expansion that has a minimal number of literals appearing in an even number of product terms will give rise to switching function realizations requiring still fewer tests. This correspondence presents a solution to the problem of selecting the RMC expansion of a given switching function possessing the smallest test set.

Published in:

Computers, IEEE Transactions on  (Volume:C-29 ,  Issue: 8 )