By Topic

A Computation Model of Parallel Solution of Linear Equations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
O. Wing ; Department of Electrical Engineering, Columbia University ; J. W. Huang

The solution process of Ax = b is modeled by an acyclic directed graph in which the nodes represent the arithmetic operations applied to the elements of A, and the arcs represent the precedence relations that exist among the operations in the solution process. Operations that can be done in parallel are identified in the model and the absolute minimum completion time and lower bounds on the minimum number of processors required to solve the equations in minimal time can be found from it. Properties of the model are derived. Hu's level scheduling strategy is applied to examples of sparse matrix equations with surprisingly good results. Speed-up using parallel processing is found to be proportional to the number of processors when it is 10-20 percent of the order of A.

Published in:

IEEE Transactions on Computers  (Volume:C-29 ,  Issue: 7 )