By Topic

Optimal Design of Distributed Information Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
P. P. -S. Chen ; Graduate School of Management, University of California ; J. Akoka

In this paper a model is developed for the optimization of distributed information systems. Compared with the previous work in this area, the model is more complete, since it considers simultaneously the distribution of processing power, the allocation of programs and databases, and the assignment of communication line capacities. It also considers the return flow of information, as well as the dependencies between programs and databases. In addition, an algorithm, based on the "bounded branch and bound" integer programming technique, has been developed to obtain the optimal solution of the model. The algorithm is more efficient than several existing general nonlinear integer programming algorithms. Also, it avoids some of the disadvantages of heuristic and decomposition algorithms which are used widely in the optimization of computer networks and distributed databases. The algorithm has been implemented in Fortran, and the computation times of the algorithm for several test problems have been found very reasonable.

Published in:

IEEE Transactions on Computers  (Volume:C-29 ,  Issue: 12 )