By Topic

Tours of Graphs, Digraphs, and Sequential Machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Cull, P. ; Department of Computer Science, Oregon State University

A tour of a graph (digraph or sequential machine) is a sequence of nodes from the graph such that each node appears at least once and two nodes are adjacent in the sequence only if they are adjacent in the graph. Finding the shortest tour of a graph is known to be an NP-complete problem. Several theorems are given that show that there are classes ofgraphs in which the shortest tour can be found easily. For more general graphs, we present approximating algorithms for finding short tours. For undirected graphs, the approximating algorithms give tours at worst a constant times the length of the shortest tour. For directed graphs, the size of the calculated tour is bounded by the size of the digraph times the shortest tour. Not only are the bounds worse for the directed case, but the running times of the approximating algorithms are also larger than those for the undirected case.

Published in:

Computers, IEEE Transactions on  (Volume:C-29 ,  Issue: 1 )