By Topic

Combinatorial Merging and Huffman's Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Parker, D.S., Jr ; Department of Computer Science, University of California

Huffman's algorithm produces an optimal weighted r-ary tree on a given set of leaf weights, where the weight of any parent node is the maximum of the son weights plus some positive constant. If the weights are viewed as (parallel) completion times, the algorithm has useful applications to combinatorial circuit design— especially for merging, or "fanning-in," a set of inputs with varying ready times: the weight of the tree's root node is then the completion time of the whole merging process. In this note we give new, tight upper and lower bounds on the weight of this root node (extending some work of Golumbic), and briefly describe an application in multiplexor design which exercises both of these bounds.

Published in:

Computers, IEEE Transactions on  (Volume:C-28 ,  Issue: 5 )