By Topic

On the Mean Accuracy of Hierarchical Classifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Kulkarni, A.V. ; Coulter Biomedical Research Laboratory

A performance measure is derived for a multiclass hierarchical classifier under the assumption that a maximum likelihood rule is used at each node and the features at different nodes of the tree are class-conditionally statistically independent. The mean accuracy of an estimated hierarchical classifier is then defined as its performance averaged across all classification problems, when an estimated decision rule is used at every node. For a balanced binary decision tree, it is shown that there exists an optimum number of quantization levels for the features which maximizes the mean accuracy. The optimum quantization level increases with the number of training samples per class available to estimate the node decisions and is a nondecreasing function of the depth of the tree.

Published in:

Computers, IEEE Transactions on  (Volume:C-27 ,  Issue: 8 )