By Topic

New Parallel-Sorting Schemes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Preparata, Franco P. ; Coordinated Science Laboratory, Department of Electrical Engineering and the Department of Computer Science, University of Illinois

In this paper, we describe a family of parallel-sorting algorithms for a multiprocessor system. These algorithms are enumeration sortings and comprise the following phases: 1) count acquisition: the keys are subdivided into subsets and for each key we determine the number of smaller keys (count) in every subset; 2) rank determination: the rank of a key is the sum of the previously obtained counts; 3) data rearrangement: each key is placed in the position specified by its rank. The basic novelty of the algorithms is the use of parallel merging to implement count acquisition. By using Valiant's merging scheme, we show that n keys can be sorted in parallel with n log2n processors in time C log2n + o(log2n); in addition, if memory fetch conflicts are not allowed, using a modified version of Batcher's merging algorithm to implement phase 1), we show that n keys can be sorted with n1 +αprocessors in time (C'/α a) log2n + o(log2n), thereby matching the performance of Hirschberg's algoithm, which, however, is not free of fetch conflicts.

Published in:

Computers, IEEE Transactions on  (Volume:C-27 ,  Issue: 7 )