By Topic

Piecewise Approximation of Pictures Using Maximal Neighborhoods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ahuja, N. ; Computer Science Center, University of Maryland ; Davis, L.S. ; Milgram, D.L. ; Rosenfeld, Azriel

Suppose that we are given a picture having approximately piecewise constant gray leveL Each point P has a largest neighborhood N(P) that is entirely contained in one of the constant regions, and the set of maximal N(P)'s (i.e., N(P)'s not contained in other N(P)'s) constitutes an economical description of the picture, generalizing the Blum "skeleton" or medial axis transformation. This description can be used to construct approximations to the picture (e.g., by discarding small N(P)'s). The picture can be smoothed, without excessive blurring, by averaging over each N(P). By taking differences between pairs of touching maximal N(P)'s, the edges between the regions can be detected; since this edge detection scheme is not based on symmetrical detection operators, it is not handicapped when two adjacent regions differ greatly in size.

Published in:

Computers, IEEE Transactions on  (Volume:C-27 ,  Issue: 4 )