By Topic

Using an Efficient Sparse Minor Expansion Algorithm to Compute Polynomial Subresultants and the Greatest Common Denominator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Griss, M.L. ; Department of Computer Science, University of Utah

In this paper, the use of an efficient sparse minor expansion method to directly compute the subresultants needed for the greatest common denominator (GCD) of two polynomials is described. The sparse minor expansion method (applied either to Sylvester's or Bezout's matrix) naturally computes the coefficients of the subresultants in the order corresponding to a polynomial remainder sequence (PRS), avoiding wasteful recomputation as much as possible. It is suggested that this is an efficient method to compute the resultant and GCD of sparse polynomials.

Published in:

Computers, IEEE Transactions on  (Volume:C-27 ,  Issue: 10 )