By Topic

Bayesian Methods in Nonlinear Digital Image Restoration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Hunt, B.R. ; Department of Systems and Industrial Engineering, University of Arizona

Prior techniques in digital image restoration have assumed linear relations between the original blurred image intensity, the silver density recorded on film, and the film-grain noise. In this paper a model is used which explicitly includes nonlinear relations between intensity and film density, by use of the D-log E curve. Using Gaussian models for the image and noise statistics, a maximum a posteriori (Bayes) estimate of the restored image is derived. The MAP estimate is nonlinear, and computer implementation of the estimator equations is achieved by a fast algorithm based on direct maximization of the posterior density function. An example of the restoration method implemented on a digital image is shown.

Published in:

Computers, IEEE Transactions on  (Volume:C-26 ,  Issue: 3 )