Cart (Loading....) | Create Account
Close category search window
 

Statistical timing verification for transparently latched circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ruiming Chen ; Dept. of Electr. & Comput. Eng., Northwestern Univ., Evanston, IL ; Hai Zhou

High-performance integrated-circuit designs need to verify the clock schedules as they usually have level-sensitive latches for their speed. With process variations, the verification needs to compute the probability of correct clocking. Because of complex statistical correlations and accumulated inaccuracy of statistical operations, traditional iterative approaches have difficulties in getting accurate results. A statistical check of the structural conditions for correct clocking is proposed instead, where the central problem is to compute the probability of having a positive cycle in a graph with random edge weights. The authors proposed two algorithms to handle this. The proposed algorithms traverse the graph only several times to reduce the correlations among iterations, and it considers not only data delay variations but also clock-skew variations. Although the first algorithm is a heuristic algorithm that may overestimate timing yields, experimental results show that it has an error of 0.16% on average in comparison with the Monte Carlo (MC) simulation. Based on a cycle-breaking technique, the second heuristic algorithm can conservatively estimate timing yields. Both algorithms are much more efficient than the MC simulation

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:25 ,  Issue: 9 )

Date of Publication:

Sept. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.