Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Multiple-symbol differential detection for MPSK space-time block codes: decision metric and performance analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
3 Author(s)
Chunjun Gao ; Golden Hills, Milpitas, CA ; Haimovich, A.M. ; Debang Lao

Approximately 3 dB signal-to-noise ratio (SNR) loss is always paid with conventional differential space-time block codes (STBCs), compared with coherent STBCs. In this paper, a multiple-symbol differential detection (MSDD) technique is proposed for M-ary phase-shift keying (PSK) STBCs. The new scheme can greatly narrow the 3-dB performance gap by extending the observation interval for differential decoding. The technique uses maximum-likelihood sequence detection instead of traditional symbol-by-symbol detection, and is carried out on the slow, flat Rayleigh fading channel. A generalized decision metric is derived for an observation interval of arbitrary length. It is shown that for a moderate number of symbols, MSDD provides approximately 1.5 dB performance improvement over conventional differential detection. In addition, a closed-form pairwise error probability and approximate bit-error probability (BEP) are derived for multiple-symbol differential binary PSK STBC. Results show that the theoretical BEP matches simulation results well. The BEP is shown to converge asymptotically with the number of symbols in the observation interval to that of the differential scheme with coherent detection

Published in:

Communications, IEEE Transactions on  (Volume:54 ,  Issue: 8 )