By Topic

A 10.7-MHz sixth-order SC ladder filter in 0.35-/spl mu/m CMOS technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
J. Adut ; Dept. of Electr. & Comput. Eng., Texas A&M Univ., College Station, TX, USA ; J. Silva-Martinez ; M. Rocha-Perez

A sixth-order 10.7-MHz bandpass switched-capacitor filter based on a double terminated ladder filter is presented. The filter uses a multipath operational transconductance amplifier (OTA) that presents both better accuracy and higher slew rate than previously reported Class-A OTA topologies. Design techniques based on charge cancellation and slower clocks are used to reduce the overall capacitance from 782 down to 219 unity capacitors. The filter's center frequency and bandwidth are 10.7 MHz and 400 kHz, respectively, and a passband ripple of 1 dB in the entire passband. The quality factor of the resonators used as filter terminations is around 32. The measured (filter + buffer) third-intermodulation (IM3) distortion is less than -40 dB for a two-tone input signal of +3-dBm power level each. The signal-to-noise ratio is roughly 58 dB while the IM3 is -45 dB; the power consumption for the standalone filter is 42 mW. The chip was fabricated in a 0.35-mum CMOS process; filter's area is 0.84 mm2

Published in:

IEEE Transactions on Circuits and Systems I: Regular Papers  (Volume:53 ,  Issue: 8 )