By Topic

Scanning Electron and Atomic Force Microscopy to Study Plasma Torch Effects on B. cereus Spores

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Tarasenko, O. ; Dept. of Biol., Arkansas Univ., Little Rock, AR ; Nourbakhsh, S. ; Kuo, S.P. ; Bakhtina, A.
more authors

The occurrence of scanning electron microscopy (SEM) and atomic force microscopy (AFM) side-by-side is becoming increasingly common in analytical research. This article shows microscopy techniques to image Bacillus spores, to measure spore dimensions, and to demonstrate how these methods provide supplementary information to study plasma torch effects. This paper demonstrates that observed morphologies of spores before and after exposure to a plasma torch are remarkably different. The use of SEM and AFM as a tool complex enables examination of spore morphology and dimensions as well as their alterations during decontamination using plasma torch

Published in:

Plasma Science, IEEE Transactions on  (Volume:34 ,  Issue: 4 )