Cart (Loading....) | Create Account
Close category search window
 

Group-wise V-BLAST detection in multiuser space-time dual-signaling wireless systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ho, C.-L. ; Res. Lab. of Inf. & Commun., Ind. Technol. Res. Inst., Hsinchu ; Jwo-Yuh Wu ; Ta-Sung Lee

This paper studies the V-BLAST detection in a general multiuser space-time wireless system, in which each user's data stream is either (orthogonal) space-time block coded (OSTBC) for transmit diversity or spatially multiplexed (SM) for high spectral efficiency. The motivation behind this work is that each user adopting a signaling scheme better matched to his own channel condition proves to improve the individual link performance but the resultant co-channel interference mitigation problem is scarcely addressed thus far. By exploiting the algebraic structure of orthogonal code, it is shown that the V-BLAST detector in the considered dual-signaling environment allows for an attractive group-wise implementation: at each iteration a group of symbols, transmitted either from an OSTBC station or from an antenna of an SM terminal, are jointly detected. The group detection property, resulting uniquely from the use of orthogonal codes, potentially improves the dual-mode signal separation efficiency, especially when the OSTBC terminals are dense in the cell. The embedded structure of the channel matrix is also exploited for deriving a computationally efficient detector implementation. Flop count evaluations and numerical examples are used for illustrating the performance of the proposed V-BLAST based solution

Published in:

Wireless Communications, IEEE Transactions on  (Volume:5 ,  Issue: 7 )

Date of Publication:

July 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.