By Topic

Performance analysis of multicast key backbone for secure group communications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Rung-Hung Gau ; Dept. of Comput. Sci. & Eng., Nat. Sun Yat-Sen Univ., Kaohsiung

In this paper, we propose and analyze a multicast key backbone for secure group communications. When a group member joins or leaves the multicast group, the system has to update and distribute encryption keys to assure that only active members could receive the latest information. In previous tree-based multicast key management schemes, the depth of the key tree is unbounded and analytically deriving the exact value of the corresponding average update cost remains an open problem. In contrast, the depth of the proposed multicast key backbone is fixed. We show that the evolution of the multicast key backbone can be modeled as a continuous-time Markov chain or a regenerative process. We analytically derive the average update cost for a state transition. Furthermore, we use renewal theory to derive the exact value of the average update cost per time unit.

Published in:

Communications Letters, IEEE  (Volume:10 ,  Issue: 7 )