By Topic

A Unified Approach to Feature Selection and Learning in Unsupervised Environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

Here the twin problems of feature selection and learning are tackled simultaneously to obtain a unified approach to the problem of pattern recognition in an unsupervised environment. This is achieved by combining a feature selection scheme based on the stochastic learning automata model with an unsupervised learning scheme such as learning with a probabilistic teacher. Test implementation of this scheme using the remotely sensed agricultural data of the Purdue laboratory for agricultural remote sensing (LARS) in a simulated unsupervised mode, has brought out the efficacy of this integrated system of feature selection and learning.

Published in:

Computers, IEEE Transactions on  (Volume:C-24 ,  Issue: 9 )