By Topic

Time and Parallel Processor Bounds for Linear Recurrence Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chen, Shyh-Ching ; Department of Computer Science, University of Illinois ; Kuck, David J

We give new time and processor bounds for the parallel evaluation of linear recurrence systems. Such systems may be represented as x̄ =c̄ + Ax̄ where A is an n X n strictly lower triangular matrix and c is a constant column vector. We show that O og22n) time steps and n3/ 8 + 0O2) processors are sufficient. We also show that mth order linear recurrences, i. e., where A has a bandwidth of m, can be computed within O(log2mlog2n) time steps with at most 3m2n/4 + O(mn) processors. In all cases, our bounds on time and processors are improvements on previous results, and the computer need only perform one type of operation at each time step (SIMD operation). By a simple transformation, the results can also be applied to the solution of any triangular linear system of equations Ax̄ = b̄.

Published in:

Computers, IEEE Transactions on  (Volume:C-24 ,  Issue: 7 )