Cart (Loading....) | Create Account
Close category search window
 

Fault Masking in Combinational Logic Circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Dias, F.J.O. ; Digital Systems Laboratory, Stanford University

An important problem in fault detection is to verify whether a single-fault test set is able to detect all multiple-faults. This paper provides a solution to the above problem. It is known that a test set derived for the detection of some fault may fail this purpose in the presence of an additional fault. This phenomenon is called masking among faults, and is of great importance in the derivation of a test set which detects all multiple-faults. This paper investigates the masking relations among faults in a combinational logic circuit. For this purpose a transform for the circuit is defined and a model for fault analysis is constructed. This transform and model reduce the number of faults which have to be considered in order to achieve the detection of all multiple-faults. An algebraic procedure yields the derivation of the masking relations. A problem which arises, namely the existence of a set of faults forming a loop of masking relations is considered. An application is presented: starting with a test set derived under the single-fault assumption it is shown how to extend this test set so that it detects all multiple-faults. All of the results in this paper are valid for general multiple-output circuits. For simplicity in the exposition, the single-output case is examined.

Published in:

Computers, IEEE Transactions on  (Volume:C-24 ,  Issue: 5 )

Date of Publication:

May 1975

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.