By Topic

On Program Placement in a Directly Executable Hierarchy of Memories

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Baer, Jean-Loup ; Computer Science Group, University of Washington

The efficient utilization of a two-level directly executable memory system is investigated. After defining the time and space product resulting from static allocation of the most often referenced pages, from paging, and from an optimal algorithm when the amount of primary memory is constrained, we introduce a learning algorithm. Its basic feature is to monitor references in such a way that it prevents seldom accessed pages to be brought into primary memory. The additional hardware requirements are not extensive. Simulations attest to the validity of the concept, and show that results are comparable with those obtained from the static allocation (the latter being impractical since it requires the knowledge of the whole reference stream) and superior to those obtained with paging. In the case of application programs, contributions to the learning algorithm can be made at compile time. Algorithms and data stuctures necessitated in an optimizing phase of the compiler are described.

Published in:

Computers, IEEE Transactions on  (Volume:C-23 ,  Issue: 8 )