By Topic

Pattern Recognition by Convolution Polynomial

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Remler, M.P. ; Departments of Medicine (Neurology) and Anatomy, University of North Carolina

Pattern recognition is considered as a mapping from the set of all inputs to the numbers 0 to 1. The inputs are treated as vectors. A topological group algebra over the vector space is described. The input is treated as avariable in a polynomial of that group algebra. A correspondence between inputs and numbers is established. This correspondence is used to prove that the polynomials in the algebra can represent a solution to any pattern recognition problem. When the coefficients of the polynomial are suitably chosen vectors, the natural topology of the input vector space is preserved. The importance of this approach as a basis for a completely general efficient parallel process, and practically realizable pattern recognizing machine is presented. The concept may be realized by a modular parallel process type of machinery.

Published in:

Computers, IEEE Transactions on  (Volume:C-23 ,  Issue: 5 )