By Topic

A Contextual Postprocessing System for Error Correction Using Binary n-Grams

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Riseman, E.M. ; Department of Computer and Information Science, University of Massachusetts ; Hanson, A.R.

The effectiveness of various forms of contextual information in a postprocessing system for detection and correction of errors in words is examined. Various algorithms utilizing context are considered, from a dictionary algorithm which has available the maximum amount of information, to a set of contextual algorithms utilizing positional binary n-gram statistics. The latter information differs from the usual n-gram letter statistics in that the probabilities are position-dependent and each is quantized to 1 or 0, depending upon whether or not it is nonzero. This type of information is extremely compact and the computation for error correction is orders of magnitude less than that required by the dictionary algorithm.

Published in:

Computers, IEEE Transactions on  (Volume:C-23 ,  Issue: 5 )