By Topic

An Algorithm for the Solution of Linear Inequalities

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
G. Nagaraja ; School of Automation, Indian Institute of Science ; G. Krishna

The problem of solving a system of linear inequalities is central to pattern classification where a solution to the system, consistent or not, is required. In this paper, an algorithm is developed using the method of conjugate gradients for function minimization. Specifically, it is shown that the algorithm converges to a solution in both the consistent and inconsistent cases in a finite number of steps: this is the main result. A related criterion function which has significance in pattern classification problems is derived and a variant of the algorithm to minimize the same is given along with computationally convenient modifications. A linear minimization algorithm which makes complete use of the problem structure is given: this is a part of the main algorithm. Computer simulation results for switching problems are presented and the algorithm is compared with Ho–Kashyap and accelerated relaxation algorithms; the results show that the proposed algorithm is faster than the latter algorithms with respect to both the number of iterations and time for convergence.

Published in:

IEEE Transactions on Computers  (Volume:C-23 ,  Issue: 4 )