By Topic

Every Finite-State Machine can be Simulated (Realized) by a Synchronous (Asynchronous) Binary Feedback Shift-Register Machine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Levy, L.S. ; Department of Statistics and Computer Science, University of Delaware ; Freeman, M.

A theoretical model of a microprogram unit is formulated, and the relationship of this model to a form of feedback shift register is developed. The feedback shift-register machine variant has synchronous and asynchronous prototypes. The asynchronous binary feedback shift-register machines realize every fundamental mode asynchronous sequential (finite-state) machine. The synchronous feedback shift-register machine differs from the standard definition by the addition of transitional states to the usual (nontransitional) states, and a single step in the simulation is a move between nontransitional states. When synchronous feedback shift-register machines are generalized in this way, they also become universal components capable of simulating ali finite-state machines.

Published in:

Computers, IEEE Transactions on  (Volume:C-23 ,  Issue: 2 )