By Topic

Bounds on the Number of Pseudothreshold Functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Baugh, C.R. ; IEEE

Upper and lower bounds are derived for the number of pseudothreshold functions of n variables. (Pseudothershold logic is a generalization of threshold logic.) It is shown that a lower bound on the number of pseudothreshold functions P(n) of exactly n variables realized by zero-free structures is The number of pseudothreshold functions Q(n) of n variables realized by nontrivial structures is bounded by It is also proven that is a lower bound on the number of positive functions of exactly n variables.

Published in:

Computers, IEEE Transactions on  (Volume:C-20 ,  Issue: 12 )