By Topic

Error Bounds for a Contextual Recognition Procedure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

The general problem of the use of context in computer character recognition is briefly reviewed. For the special case where the context is generated by a two-state stationary Markov chain, upper bounds are obtained for the average error probability of an optimal recognition procedure, based on compound decision functions. These bounds are nonparametric and simple functions of the "differences" between: 1) the a priori and transition probabilities of the context, and 2) the distributions of the measurements used to identify the characters. Some justiflcations, applications to systems design, and illustrative examples are given. An improvement is also obtained on a previously derived upper bound for procedures using no context.

Published in:

Computers, IEEE Transactions on  (Volume:C-20 ,  Issue: 10 )