By Topic

Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

A family of graph-theoretical algorithms based on the minimal spanning tree are capable of detecting several kinds of cluster structure in arbitrary point sets; description of the detected clusters is possible in some cases by extensions of the method. Development of these clustering algorithms was based on examples from two-dimensional space because we wanted to copy the human perception of gestalts or point groupings. On the other hand, all the methods considered apply to higher dimensional spaces and even to general metric spaces. Advantages of these methods include determinacy, easy interpretation of the resulting clusters, conformity to gestalt principles of perceptual organization, and invariance of results under monotone transformations of interpoint distance. Brief discussion is made of the application of cluster detection to taxonomy and the selection of good feature spaces for pattern recognition. Detailed analyses of several planar cluster detection problems are illustrated by text and figures. The well-known Fisher iris data, in four-dimensional space, have been analyzed by these methods also. PL/1 programs to implement the minimal spanning tree methods have been fully debugged.

Published in:

Computers, IEEE Transactions on  (Volume:C-20 ,  Issue: 1 )