By Topic

Detection, localization, and estimation of edges

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chen, J.S. ; Sch. of Eng., Univ. of Southern California, Los Angeles, CA, USA ; Medioni, G.

A method to detect, locate, and estimate edges in a one-dimensional signal is presented. It is inherently more accurate than all previous schemes as it explicitly models and corrects interaction between nearby edges. The method is iterative with initial estimation of edges provided by the zero crossings of the signal convolved with Laplacian of Gaussian (LoG) filter. The necessary computations necessitate knowledge of this convolved output only in a neighborhood around each zero crossing and in most cases, could be performed locally by independent parallel processors. Results on one-dimensional slices extracted from real images, and on images which have been proposed independently in the row and column directions are shown. An analysis of the method is provided including issues of complexity and convergence, and directions of future research are outlined.<>

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:11 ,  Issue: 2 )