By Topic

Note on a Class of Statistical Recognition Functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

Statistical recognition procedures can be derived from the functional form of underlying probability distributions. Successive approximation to the probability function leads to a class of recognition procedures. In this note we give a hierarchical method of designing recognition functions which satisfy both the least-square error property and a minimum decision error rate property, although our discussions are restricted to a binary measurement space and its dichotomous classification.

Published in:

IEEE Transactions on Computers  (Volume:C-18 ,  Issue: 1 )