By Topic

Population-based learning: a method for learning from examples under resource constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Wah, B. ; Illinois Univ., Urbana, IL, USA

A learning model for designing heuristics automatically under resource constraints is studied. The focus is on improving performance-related heuristic methods (HMs) in knowledge-lean application domains. It is assumed that learning is episodic, that the performance measures of an episode are dependent only on the final state reached in evaluating the corresponding test case, and that the aggregate performance measures of the HMs involved are independent of the order of evaluation of test cases. The learning model is based on testing a population of competing HMs for an application problem, and switches from one to another dynamically, depending on the outcome of previous tests. Its goal is to find a good HM within the resource constraints, with proper tradeoff between cost and quality. It extends existing work on classifier systems by addressing issues related to delays in feedback, scheduling of tests of HMs under limited resources, anomalies in performance evaluation, and scalability of HMs. Experience in applying the learning method is described

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:4 ,  Issue: 5 )