By Topic

Simultaneous Peak and Average Power Optimization in Synchronous Sequential Designs Using Retiming and Multiple Supply Voltages

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Allam, A.K. ; Dept. of Electr. & Comput. Eng., Louisiana State Univ. ; Ramanujam, J.

In this paper, we present a combination of basic retiming and multiple voltage scheduling (MVS) techniques in order to optimize dynamic peak power as well as average power consumption in synchronous sequential circuits under timing constraints. First, we devise a mixed-integer linear programming (MILP) formulation for the problem of scheduling for optimal peak and/or average power consumption through a unification of retiming and MVS techniques. Then, to alleviate the problem of variable explosion in MILP, we present a two-stage algorithm for peak and average power optimization. First, power-oriented retiming is proposed to restructure the input SDFG in order to achieve parallelization to favor nodes with high power consumption followed by an MILP formulation for peak and/or average power optimization using MVS technique

Published in:

Integrated Circuit Design and Technology, 2006. ICICDT '06. 2006 IEEE International Conference on

Date of Conference:

0-0 0