Cart (Loading....) | Create Account
Close category search window

High-order Runge-Kutta multiresolution time-domain methods for computational electromagnetics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Qunsheng Cao ; Coll. of Inf. Sci. & Technol., Nanjing Univ. of Aeronaut. & Astronaut. ; Kanapady, R. ; Reitich, F.

In this paper we introduce a class of Runge-Kutta multiresolution time-domain (RK-MRTD) methods for problems of electromagnetic wave propagation that can attain an arbitrarily high order of convergence in both space and time. The methods capitalize on the high-order nature of spatial multiresolution approximations by incorporating time integrators with convergence properties that are commensurate with these. More precisely, the classical MRTD approach is adapted here to incorporate mth-order m-stage low-storage Runge-Kutta methods for the time integration. As we show, if compactly supported wavelets of order N are used (e.g., the Daubechies DN functions) and m=N, then the RK-MRTD methods deliver solutions that converge with this overall order; a variety of examples illustrate these properties. Moreover, we further show that the resulting algorithms are well suited to parallel implementations, as we present results that demonstrate their near-optimal scaling

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:54 ,  Issue: 8 )

Date of Publication:

Aug. 2006

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.