By Topic

A low-power up-conversion CMOS mixer for 22-29-GHz ultra-wideband applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Verma, A. ; Dept. of Electr. & Comput. Eng., Florida Univ., Gainesville, FL ; O, K.K. ; Jenshan Lin

A double-balanced, low-power, and low-voltage dual-gate up-conversion mixer working at K-band is designed and fabricated in the UMC 130-nm logic CMOS process. The mixer achieves a 3-dB conversion-gain bandwidth of 1.8 GHz at the input IF port and a 3-dB conversion-gain bandwidth of 10 GHz at the output RF port. The mixer achieves an output referred 1-dB compression point as high as -5.8 dBm and an output referred third-order intercept point as high as 5.8 dBm, while consuming 8.0 mW from a 1.2-V supply. This study demonstrates that the implementation of low-power mixers operating in the 22-29-GHz band for ultra-wideband automotive radar applications is possible in low-cost and low-voltage logic CMOS technology

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:54 ,  Issue: 8 )