Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Low phase-noise microwave oscillators with interferometric signal processing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ivanov, E.N. ; Sch. of Phys., Univ. of Western Australia, Crawley ; Tobar, M.E.

Phase-noise spectral density of a 9-GHz oscillator has been reduced to -160 dBc/Hz at 1-kHz offset frequency, which is the lowest phase noise ever measured at microwave frequencies. This performance was achieved by frequency locking a conventional loop oscillator to a high-Q sapphire dielectric resonator operating at the elevated level of dissipated power (~0.4 W). Principles of interferometric microwave signal processing were applied to generate the error signal for the frequency control loop. No cryogenics were used. Two almost identical oscillators were constructed to perform classical two-oscillator phase-noise measurements where one oscillator was phase locked to another. The phase locking was implemented by electronically controlling the level of microwave power dissipated in the sapphire dielectric resonator

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:54 ,  Issue: 8 )