By Topic

On tracking performance in bilateral teleoperation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chopra, N. ; Coordinated Sci. Lab., Illinois Univ., Urbana, IL ; Spong, M.W. ; Ortega, R. ; Barabanov, N.E.

This paper addresses the problem of steady-state position and force tracking in bilateral teleoperation. Passivity-based control schemes for bilateral teleoperation provide robust stability against network delays in the feedback loop and velocity tracking, but do not guarantee steady-state position and force tracking in general. Position drift due to data loss and offset of initial conditions is a well-known problem in such systems. In this paper, we introduce a new architecture, which builds upon the traditional passivity-based configuration by using additional position control on both the master and slave robots, to solve the steady-state position and force-tracking problem. Lyapunov stability methods are used to establish the range of the position control gains on the master and slave sides. Experimental results using a single-degree-of-freedom master/slave system are presented, showing the performance of the resulting system

Published in:

Robotics, IEEE Transactions on  (Volume:22 ,  Issue: 4 )